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The method of fictitious absorption [l-3] is generalized to a class of dynamic mixed problems of the theory of elasticity for a 

multilayered inhomogeneous half-space. The generalization is based on the use of numerical methods of solving integral equations 

of the first kind, which enables an exact representation of the symbols of the kernel of the integral operators to be employed 

and enables one to omit the approximation stage which is necessary when realizing the traditional scheme of the method of fictitious 

absorption. One thereby completely preserves all the dynamic features of the symbols of the kernel of the integral equation, 

including the branching points, which leads to a more complete consideration of the dynamic properties of the problem and, 

consequently, to an increase in the accuracy of the solution obtained in the result. 0 2002 Elsevier Science Ltd. All rights reserved. 

Previously ([l-3], etc.) the method of fictitious absorption was used to solve integral equations, the 
symbols of the kernel of which were meromorphic functions, 
exact factorization. 

1. THE GENERAL SCHEME OF THE METHOD 

Consider the integral equation 

kq = j b, - 5>qOM = f<x, >, 
-a 

k(s) = & 1 K(a)Pda 

the approximations of which allowed of 

1x1 ISa (1.1) 

(1.2) 

The function K(a) possesses characteristic properties of the symbols of the kernel of the integral 
equation which arise when investigating dynamic mixed problems of the theory of elasticity and 
mathematical physics for a multilayered inhomogeneous half-space: (1) it is even and has, on the real 
axis, a finite number of branching points, which depend on the type of problem and the properties of 
the material of the medium, (2) it is meromorphic in the complex plane with cuts, which do not change 
into one another, situated in the first and third quadrants and connecting the branching points with an 
infinitely distant point, (3) it has, one the real axis, a finite number of zeros yk(k = 1, 2, . . . , n2) and 
poles zk (k = 1,2, . . , nl), which depend on the frequency, and also a denumerable set of complex zeros 
and poles with condensation points in certain sectors containing the imaginary axis, and (4) at infinity 
it can be represented in the form 

K(a)=c 1 al-' [l+O(a-')I 

Integral equation (1.1) is uniquely solvable for any doubly continuous differentiable functionf(xt) 
[4]; the location of the contour I- in integral (1.2) ensures that the radiation conditions are satisfied. 

We will introduce the functions 

n(a)= fi (a2 -yi)(a2 -z;)-' and K,,(a)=K(a)K'(a) 
k=I 
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where zk (k = 1,2, . . . , n,) and yk (k = 1, 2, . . . , n2) are real poles and zeros of the function K(a), while 
the remainingzk (k = nl + 1, . . . , M) and ‘(k (k = 112 + 1, . . . , M, M 3 max{ni, ~1) are complex poles 
and zeros of K(a) lying in the strip 1 Ima 1 c Eo. 

It can be seen that the function &(a), which in general depends on the frequency, includes 
all singularities of the function K(a) ignored in Q(a) and primarily the branching points on the real 
axis. The asymptotic properties of the functions K(a) and &(a) are identical since II(m) = 1 by 
construction. 

Using the method of fictitious absorption we will represent the symbol of the kernel of integral 
equation (1.1) in the form 

K(a) = Ko(cM(a) (1.3) 

Remark 1. Previously [l-3], when using the method of fictitious absorption, the approximate represenfation (1.3) 
of the function K(a) was employed, which allows of exact factorization, in which K,(a) = c(a2 + B’)- ‘*, where B 
* 1 is a specified parameter. 

Definition. We will call the least set, closed in Q, outside of which q(x,) = 0, the carrier of the function 
q(x,), specified in the region 51. 

Lemma [l]. Suppose the function 4(x1) E L,[a, a],p > 1 has a carrier in the range [a, a]. In order 
that the function (v(a) and V-i@,) are the direct and inverse Fourier transformation operators) should 
possess the same property, it is necessary and sufficient for the identify V(a)q = 0 to hold in the polar 
set of the function l-I(a) (i.e. when a = + zk, k = 1, 2, . . . , M). 

We will represent the solution of Eq. (1.1) in the form [l] 

9(x1) = 90(x, ) + WI) (1.4) 

We will require that the relations 

V(a)q = V(a)cp, V(a)q, = 0, a = + zk, k = 1,2, . . . . M (1.5) 

must be satisfied. 

Remark 2. Here and henceforth the poles zk and zeros yk are assumed to be simple. There are no fundamental 
difficulties in extending our analysis to the case of multiple zeros and poles. It is only necessary to take into account 
that, in this case, representation (1.3) and the form of relations (1.5) are changed [l]. 

Substituting expression (1.4) into integral equation (l.l), we convert it to the form 

k9o = f- Q 

We further introduce the function [l] 

GI) = V-‘(xi )T(a), T(a) = Wa)Qo(a), Q,,(a) = V(a)qo(x,) 

and use it as the new unknown. 

(1.6) 

(1.7) 

The problem of solving (1.6) taking relations (1.3) and (1.7) into account, thereby reduces to solving 
the integral equation 

(1.8) 

Remark 3. It follows from the construction that integral equation (1.8) is equivalent to (1.6) i.e. in this case, the 
need to use the perturbation theorem [l] is eliminated. 

We will assume that the solution of integral equation (1.8) has been constructed and the function 
t(xl) has been obtained. Relations (1.7) enable the function qo(xl) to be re-established in the form 

90(x1) = WXI )n-YW(Wo,) (1.9) 
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It follows from the lemma that in order for the function q&x1) to belong toLJ+z, a],p > 1, and have 
a carrier in [-a, a], the following relations must be satisfied 

V(a>f(x, ) = 0, a = f yk, k = 1,2, . . . . M (1.10) 

i.e. the function t(xJ must contain an arbitrariness, the degree of which is determined by the number 
of conditions (1.10). This arbitrariness must be put into the function cp (xi), which forms part of solution 
(1.4). 

Using relations (1.4) and (1.9), we construct the Fourier transformant of the solution of the initial 
integral equation (1.1) in the form 

Q(a) = T(a)Il-‘(a) + V(a>cp (1.11) 

To obtain the integral characteristic of the problem (for example, the reaction of the base to the action 
of a punch), it is sufficient to put a = 0 in (1.11). To construct q(x,) -the solutions of the initial integral 
equation (1. l), it is necessary to apply an inverse Fourier transformation to relation (1.11). 

2. REALIZATION OF THE METHOD 

Earlier we introduced a function cp (xi) containing an arbitrariness (its form was not specified), which 
must be constructed from the values of the functionals (1.10). In the final expressions cp(xi) is present 
under the integral operator sign, by choosing which, one/can use a fairly wide class of functions [l]. 
Here we will use as cp(x,) a system of Dirac b-functions 

q(x, ) = 2f C& - x: 1 
k=l 

(2-l) 

wherex: are the coordinates of points which divide the segment [a, a] into equal parts. It can be verified 
that the function cp (xi) satisfied relations (1.5). 

After substituting expression (1.7) into integral equation (1.1) and taking Eq. (2.1) into account, the 
integral equation takes the form 

(2.2) 

Bearing expressions (1.7) and (1.3) m mind, we can convert integral equation (2.2) to an integral 
equation in the new unknown t(xi) 

(2.3) 

According to the lemma, the function t (x,) must satisfy functionals (l.lO), which we will represent 
in a form that is more convenient for subsequent analysis 

T(a)=O, a=*yk, k= I,2 ,...( M (2.4) 

Equalities (2.4) represent a system of 2h4 equations in 2M unknowns C,, which occur in (2.1), and which, 
taking (1.4) into account, closes the problem and enables the Fourier transformant of the solution of 
integral equation (1.1) to be represented in the form 

Q(a)= T(a)lT'(a)+2f ckeim' 
k=l 

(2.5) 
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3. NUMERICAL REALIZATION OF THE METHOD 

Using the superposition principle, we can represent the solution of Eq. (2.3) in the form 

t(x,)=lg(X*)+*~ C&(X,) 
k=I 

where the functions tk(xl) (k = 0, 1, . . . , 2M) satisfy the equations 

k,t, = i ko(x, - &(‘!>6s = fk (xi >, 1x1 1 s a 
-a 

We will introduce two systems of coordinate functions ~Jxi), cp,(xi) (p = 1, 2, 

tk(x,)= 5 #~,,(x,)r k = 0,1,...,2M 
p=l 

. . . , N) and put 

(3.1) 

(3.2) 

After substituting expressions (3.3) into Eqs (3.2) we obtain the system of equations 

f I%_[ ko(+ -5)w,(5)ds=fk(G ix, 1~ a 

Applying the weighting procedure of system (3.4) to the coordinate functions cpi(xi) (I = 1,2, 
we arrive at the need to solve 2M + 1 systems of algebraic equations 

ABk = Fk, k= 0, 1, . . . . 2M 

where 

A = IIAP~Il~I=, 9 API = I ~o(aWpW@; @Ma 

r 

9 = Cr,‘),“=,l r;f = J W)@,(W 
-iar: da 

t- 

B, = (p,“,,“,, 9 fo’ = j fh, )‘PI(X, )h, 

--(I 

(3.3) 

(3.4) 

, N), 

(3.5) 

Y;(a) and @[(a) are the Fourier transformations of the functions I,, and cp&,), and ( )* is a complex- 
conjugate quantity. 

Suppose the matrix A is constructed and from it A-‘. Then the solutions of systems (3.5) can be 
represented in the form 

Bk = A-‘Irk (3.6) 

It follows from relation (3.6) that the main burden of solving the 2M + 1 systems of algebraic equations 
(3.5) lies in constructing the matrix A and calculating A-‘. By construction it is sufficient to do this once. 
Further, by successive use of relation (3.6) one can calculate all the vectors Bk, the components of which 
are the coefficients pc(p = 1, . . . , N, k = 0, 1, . . . ,2&f). 

To construct the solution of integral equation (2.3) we will represent solution (3.1) in the form 

The constants Ck, which occur in (2.5), can be found from the system 

7&&f C,T,(fy,)=O, fl=O,I ,..., 2M 
k=l 

which is obtained when expressions (3.7) are substituted into relations (2.4). 

(3.7) 
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Remark 4. If it is necessary to calculate the function q(x,) - the solution of the initial integral equation (l.l), one 
cannot use representation (2.7, since, after applying an inverse Fourier transformation to (2.9, the final expressions 
will contain a generalized function. In this case, either the function cp(xi) must be chosen from the class L,, p > 
1, or the function t(x,) must be introduced in such a way [l], that the function cp(xi) is present under the integral 
operator sign in the final expressions for q(x& 

5. The method can be extended, without particular difficulty, to the class of spatial axisymmetric problems 

of the theory of elasticity. In this case, it is sufficient in the constructions to change to the new variable 
11 = da; + a;. 

4. THE DYNAMICS OF A PUNCH ON THE SURFACE OF AN 
INHOMOGENEOUS HALF-SPACE 

We will consider, as an example, the problem of the oscillations of a rigid punch on the surface of a 
structurally inhomogeneous medium, which takes the form of a prestressed layer 0 s x3 < h on the 
surface of a prestressed half-space x3 G 0. We will assume that the half-space is more rigid, i.e. 
h, c A,, uS < uLp (the subscript s denotes the parameters of the layer while the subscriptp denotes the 
parameters of the half-space), and the medium is isotropic in its natural state. The punch occupies the 
region Ix1 1 G a in plan and executes steady vertical translational oscillations. There is no friction in 
the contact area. 

We will assume that the stress-strain state is homogeneous and we will consider the following: 
1) the “surface” stress-strain state - a prestressed layer on a stress-free half-space (the layer is first 

stretched or compressed, and is then combined with the half-space); 
2) a “deepened” stress-strain state - a stress-free layer on a prestressed half-space (the half-space 

is first stretched or compressed, and is then connected to the layer). 
The boundary-value problem is described by the linearized equations of motion [5] 

v. 0’“’ = pp, n = 1,2, (4.1) 

with boundary conditions on the surface 

x3 =h, “.@(‘JZ 
/ 

q(x,)exp(-W, Ix1 1s a 

0, Ix, I>0 
(4.2) 

where O(“) are linearized tensors, which pla the role of the Cauchy tensor in the linear theory of 
elasticity, p(“) is the density of the material, u * tY (x1,x3, t) = {U 
of points of the layer (n = 1) or the half-space (PZ 

r’, L$‘, US”‘> is the vector of displacements 
= 2) respectively, n is the vector of the normal to 

the surface of the medium and q(xl) is an unknown vector of the contact stresses, the components of 
which, when there is no friction in the contact area and taking into account the translational nature of 
the oscillations, have the form (0, 0, q&. 

The problem is closed by the conditions that the layer is joined to the half-space 

-+ = 0, “(1) = “(21, CL” = tL*’ (4.3) 

and the condition at infinity 

II(*) 10, x3 4 - = (4.4) 

Here tfk’ are the stress vectors at the interface between the layer and the half-space. The form of the 
tensors O@), which occur in expressions (4.1) and (4.2), is extremely lengthy and will not be given here. 
Their components were given earlier for an elastic Murnagan potential in [6-81. In view of the steady 
nature of the oscillations the time factor will henceforth be omitted. 

Boundary-value problem (4.1)-(4.4) d re uces to the solution of integral equation (l.l), in which 
f(x,) = L&J (the displacement of the points of the surface of the medium -the amplitude of the punch 
oscillations), and q(x,) = q30 (the unknown contact stresses). 

When the stress-strain state of the layer (n = 1) or the half-space (n = 2) is specified by the conditions 

op” # 0;)” f os;)O 
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we have 

K(a,co)= i 
k=l I 

A kP cho”‘h+ A k k+Z,p sho’,“h] (4.5) 

A,=A$IA’, m,j= LZ...,6 A0 = det/T,llL,j=I 

T,, = l,‘;‘ch@h, 7;./(+2 = l,‘;‘shc$‘h, T,k+‘, = 0 

T = 1”‘sho”‘h 2k 3k k ’ T 2,k+2 = 1;;’ cha;“h, Tzsk+‘, = 0 

T& = 0, &+2 = fk . (1) T 
3,k+4 

= -fk(2) (4.6) 

T& = 1, T4,k+2 = 0, T4,k+4 = -1 

(4.7) 

In formulae (4.6)-(4.8) the subscripts IE and k take the values 1 and 2, A&(1, p = 1, 2, . . . , 6) are the 
cofactors of the elements T+ p @) is the density, u,,,, is the relative extension of the fibres along the x,, 
axis, J,, is the metric factor of the layer (n = 1) or the half-space (n = 2), &mp is the Kronecker delta, 
and the coefficients vnL and $“(L, M = 0, 1, 2) depend on the form of the elastic potential. Their 
form, for certain special cases, was given previously in [5-81. The quantities or’ are found from the 
characteristic equation 

H,‘;‘,,;;’ + a*+)2 @;I2 =o 

A numerical analysis was carried out for a layer (bronze [5]), rigidly bound to a half-space (35 KhGSA 
steel [5]). The thickness of the layer h = 1 and the initial stressed state was defined by the conditions 
u1 = y = u3 1 + 0.005. 

In Fig. 1 we show curves of the real zeros (the dashed curves) and poles (the continuous curves) of 
the function K(a) (4.5) as a function of the dimensionless frequency (xZ = dm oh) when there 
are no initial stresses. The form of the curves, and also the number of real zeros and poles, which increase 
with frequency, are characteristic for problems in the case of a multilayered half-space. Strict alternation 
of the zeros and poles occurs in this case, which is ensured by the uniqueness of the solution of the 
integral equations [4]. 

As calculations have shown, a change over a fairly wide range in the value of the initial stresses does 
not change the qualitative form of the distribution of the zeros and poles, but leads to a considerable 
change in their value. It has been established that the spectral properties of the problem depend very 
much on which region of the composite medium is subject to the action of initial stresses. Localization 
of the stress-strain state in the half-space produces a considerable deformation of the dispersion curves 
and a frequency shift of these curves. Stretching of the half-space (the layer is unstressed) leads to an 
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0 5 IO K2 

Fig. 1 

Re a’. Im*ef Re Qt. Im*Q* 

Fig. 2 

increase in the values of the zeros and poles, and the values of the critical frequencies (the frequencies 
at which higher modes occur) increase. If we take into account the fact that the poles zk are connected 
with the phase space of the surface wave vk by the relation vk = oz~‘, stretching of the half-space leads 
to a reduction in the phase velocities of all the modes, proportional to the initial stresses. Compression 
of the half-space leads to the opposite result. 

Localization of the stress-strain state in the layer (the half-spaces is unstressed) affects the dispersion 
characteristics of the problem somewhat differently. Stretching of the layer leads to a reduction in the 
values of the first branch of the poles, but the values of subsequent branches of the poles, as well as 
the values of the points of their emergence, increase. Stretching of the layer thereby leads to an increase 
in the phase velocity of the first mode and a reduction in the velocities of higher modes of surface waves. 
Changes in the velocities are proportional to the initial stresses. Compression of the layer leads to the 
opposite result. 

The effect of localization of prestresses on the dynamic stiffness of the composite medium is illustrated 
in Fig. 2, in which we show graphs of the functions ReQ’ (the continuous curves), Im*Q’ = x;’ Im Q’ 
+ 6 (the dashed curves) in Fig. 2(a) and ReQ, (the continuous curves), Im*Q* = x;’ Im Q, + 6 (the 
dashed curves) in Fig. 2(b). The functions Q’ and Qlr correspond to the dynamic stiffness of the medium 
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(q30(x1) is the solution of Eq. (1.1) whenf(xi) = 1) for preliminary compression (the minus sign) or 
preliminary tension (the plus sign) of the layer (the superscript) or the half-space (the subscript). The 
calculations were carried out for a = 1. 

Curves 1 correspond to the natural state, curves 2 correspond to tension and curves 2 correspond to 
compression of the corresponding region of the composite medium. It follows from the groups that 
ReQo and Im*Qe, when there are no initial stresses, have an oscillatory form, due to the non-uniformity 
of the medium, on which localization of the stress-strain state has a considerable influence. Compression 
of the layer (curves 3 in Fig. 2a) as well as tension of the half-space (curves 2 in Fig. 2b) reduce the 
non-uniformity of the multilayered structure. Conversely, tension of the layer, as well as compression 
of the half-space, increases the non-uniformity of the medium. This confirms the peculiarity, pointed 
out earlier in [6-81, of the effect of the stress-strain on the dynamic stiffness of the medium: compression 
of the layer or of the homogeneous half-space leads to an increase in their dynamic stiffness, while tension 
leads to its reduction. 

It also follows from the graphs that when the stress-strain state is localized in the half-space, 
frequencies of maximum and minimum effect of the initial stresses on the reaction of the medium exist. 
There are no such frequencies when the stress-strain state is localized in the layer. Hence, in a structurally 
inhomogeneous medium the features detected previously in [6-81 when the dynamic properties of a 
prestressed layer [8] and a homogeneous half-space [6,7] were investigated are preserved: the presence 
in the problem for a half-space of frequencies of maximum and minimum influence of the stress-strain 
state on the reaction of the medium and the absence of such frequencies in problems for a layer. 

It should be noted that compression of the layer leads to an-increase in the level of radiation of energy 
from the contact area, while tension in the layer leads to its reduction at all frequencies. Localization 
of the initial stresses in the half-space also affects the level of radiation from the contact area, but this 
change depends on the frequency. 
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